Publications

Submitted

67. T. Ito, and A. Cervania (in review) Improved estimates of North Atlantic deoxygenation using shipboard and BGC Argo observations and Machine Learning Algorithms

66. Zhang Q., T. Ito, and A. Bracco (in review) The AMOC-Carbon Uptake relation in the subpolar North Atlantic in Four CMIP6 Earth System Models

65. Mongwe P., L. Gregor, J. Tjiputra, J. Hauck, T. Ito, C. Danek, M. Vichi, S. Thomalla and P. M. S. Monteiro, (in review), The poleward migration of the dominant CO2 sink region in the Southern Ocean under high-emission scenario

64. Zhang B., N. J. Chellman, J. O. Kaplan, L. J. Mickley, T. Ito, X. Wang, S. M. Wensman, D. McCrimmon, J. P. Steffensen, J. R. McConnell, and P. Liu, (in review), Improved Estimates of Biomass Burning Emissions from 1750 to 2010 using Ice Core Records and Inverse Modeling

63. Ito, T. and C. T. Reinhard, (in review), Flux attribution and quantification of transport feedbacks on ocean carbon removal using a new autoregressive model of air-sea exchange

62. Novi, L., Bracco, A., Ito, T., and Takano, Y., (in review) Evolution of oxygen and stratification in the North Pacific Ocean in CMIP6 Earth System Models, Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-129

2024

61. Liu G., F. Tagklis, T. Ito, and A. Bracco, (2024), Drivers of coupled climate model biases in representing Labrador Sea convection, Clim. Dyn., https://doi.org/10.1007/s00382-023-07068-z

60. Ito T., H. Garcia, Z. Wang, S. Minobe, M. C. Long, J. Cebrian, J. Reagan, T. Boyer, C. Paver, C. Bouchard, Y. Takano, S. Bushinsky, A. Cervania and C. Deutsch (2024) EUnderestimation of multi-decadal global O2 loss due to an optimal interpolation method, Biogeosciences. 21, 747–759, https://doi.org/10.5194/bg-21-747-2024

2023

59. Margolskee, A., Ito, T., Long, M. C. and Deutsch, C. A. (2023), Climatic changes in North Atlantic O2 amplified by temperature sensitivity of phytoplankton growth, Global. Biogeochem. Cycles, 37, e2023GB007930. https://doi.org/10.1029/2023GB007930

2022

58. Vollmer, T. D., Ito, T., and Lynch-Stieglitz, J. (2022). Proxy-based preformed phosphate estimates point to increased biological pump efficiency as primary cause of last glacial maximum CO2 drawdown. Paleoceanography and Paleoclimatology, 37, e2021PA004339. ( https://doi.org/10.1029/2021PA004339 )

57. Sun, D., Ito, T., Bracco, A., & Deutsch, C. (2022). Control of the air-sea oxygen to heat flux ratio during deep convection events. Global Biogeochemical Cycles, 36, e2021GB007063. (https://doi.org/10.1029/2021GB007063)

56. Ito, T. (2022). Development of the regional carbon cycle model in the central Pacific sector of the Southern Ocean. Journal of Advances in Modeling Earth Systems, 14, e2021MS002757. (https://doi.org/10.1029/2021MS002757)

55. Ito T., Y. Takano, C. Deutsch and M.L. Long, (2022), Sensitivity of global ocean deoxygenation to vertical and isopycnal mixing in an ocean biogeochemistry model, Global Biogeochemical Cycles, 36, e2021GB007151. https://doi.org/10.1029/2021GB007151

2021

54. Jersild J. S. Delawalla and T. Ito, (2021), Mesoscale eddies regulate seasonal iron supply and carbon drawdown in the Drake Passage, Geophysical Research Letters, to appear.

53. Ito, T. (2021) Optimal interpolation of global dissolved oxygen: 1965–2015. Geoscience Data Journal, 00, 1–10. https://doi.org/10.1002/gdj3.130

52. Pham, A. L. D. and T. Ito (2021). Anthropogenic iron deposition alters the ecosystem and carbon balance of the Indian Ocean over a centennial timescale. Journal of Geophysical Research: Oceans, 126. e2020JC016475. (journal)

2020

51. Jersild, A., and T. Ito (2020). Physical and biological controls of the Drake Passage pCO2 variability. Global Biogeochemical Cycles, 34, e2020GB006644. (journal)

50. Tagklis, F., Bracco, A., Ito, T., and R. M. Castelao (2020) Submesoscale modulation of deep water formation in the Labrador Sea. Sci Rep 10, 17489 https://doi.org/10.1038/s41598-020-74345-w (journal)

49. Tagklis, F., Ito, T., and Bracco, A. (2020) Modulation of the North Atlantic deoxygenation by the slowdown of the nutrient stream, Biogeosciences, 17, 231–244, https://doi.org/10.5194/bg-17-231-2020. (journal)

2019

48. Long, M. C., T. Ito, and C. Deutsch. (2019), Oxygen projections for the future, in D. Laffoley and J. M. Baxter (eds.), Ocean Deoxygenation: everyone’s problem, IUCN. (IUCN website)

47. Pham, A.L.D. and T. Ito, (2019) Ligand binding strength explains the distribution of iron in the North Atlantic Ocean, Geophys. Res. Lett., GRL59159, doi: 10.1029/2019GL083319, (preprint)

46. Ito, T. (2019), CESM Large Ensemble with Increased Access (LEIA) for Ocean Biogeochemistry, https://doi.org/10.5065/Y5K4-6D48, download, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, Colo

45. Ito T., M. C. Long, C. Deutsch, S. Minobe and D. Sun, (2019), Mechanisms of low-frequency oxygen variability in the North Pacific, GBC20840, doi:10.1029/2018GB005987, (manuscript, SI)

2018

44. Takano, Y., Ito, T., & Deutsch, C. (2018). Projected centennial oxygen trends and their attribution to distinct ocean climate forcings. Global Biogeochemical Cycles, 32. https://doi.org/10.1029/2018GB005939 (journal). Featured as a Research Highlight, "Pacific oxygen change", by Nature Climate Change (link)

43. Ferreira, D., J. Marshall, T. Ito and D. McGee, (2018), Linking glacial-interglacial cycles to multiple equilibria of climate, Geophys. Res. Lett., GRL57889, doi: 10.1029/2018GL077019, (journal).

42. Pham A.L.D., and T. Ito. (2018), Formation and maintenance of the GEOTRACES subsurface dissolved iron maxima in an ocean biogeochemistry model, Global Biogeochem. Cycles, 32. https://doi.org/10.1029/2017GB005852 (journal, draft)

2017

41. Kida, S. and Ito, T. (2017), A Lagrangian View of Spring Phytoplankton Blooms. J. Geophys. Res. Oceans. 122, 9160–9175, doi:10.1002/2017JC013383 (journal)

40. Sun, D., Ito, T., Bracco, A. (2017), Oceanic uptake of oxygen during deep convection events through diffusive and bubble-mediated gas exchange. Global Biogeochemical Cycles, 31, 1579–1591. https://doi.org/10.1002/2017GB005716.

39. Tagklis, F., A. Bracco, and T. Ito, (2017), Physically driven Patchy O2 Changes in the North Atlantic Ocean simulated by the CMIP5 Earth System Models, Global Biogeochemical Cycles, 31, doi:10.1002/2016GB005617 (journal)

38. Dittmar T., A. Stubbins, T. Ito and D. C. Jones (2017), Comment on "Dissolved organic sulfur in the ocean: Biogeochemistry of a petagram inventory", Science 356 (6340), 813., doi: 10.1126/science.aam6039 (journal)

37. Ito T., S. Minobe, M. Long and C. Deutsch, (2017), The upper ocean oxygen trend: 1958-2015, Geophysical Research Letters, 44, doi:10.1002/2017GL073613 (journal)

36. Ito T. and O. Wang, (2017), Transit Time Distribution based on the ECCO-JPL Ocean Data Assimilation, Journal of Marine Systems, doi.org/10.1016/j.jmarsys.2016.10.015 (journal)

2016

35. Iudicone D., K. B. Rodgers, Y. Plancherel, O. Aumont, T. Ito, R. Key, G. Madec and M. Ishii, (2016), The formation of the ocean's anthropogenic carbon reservoir, Scientific Reports, doi:10.1038/srep35473 (journal)

34. Ito T., (2016), Oceanic teleconnection for carbon dioxide, Global Biogeochemical Cycles 30 (8), 1244-1244, doi: 10.1002/2016GB005461 (journal)

33. Ito T., A. Nenes, M. Johnson, N. Meskhidze and C. Deutsch, (2016),  Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants, Nature Geosciences, doi:10.1038/ngeo2717 (journal)

32. Lynch-Stieglitz, J., T. Ito, and E. Michel (2016), Antarctic density stratification and the strength of the circumpolar current during the Last Glacial Maximum, Paleoceanography, 31, doi:10.1002/2015PA002915. (journal)

31. Long M., C. Deutsch and T. Ito, (2016), Finding forced trends in oceanic oxygen, Global Biogeochemical Cycles, doi:10.1002/2015GB005310 (journal).

2015

30. Jones, D., T. Ito, T. Birner, A. Klocker and D. Munday, (2015), Planetary-geometric constraints on isopycnal slope in the Southern Ocean, Journal of Physical Oceanography, doi:10.1175/JPO-D-15-0034.1 (journal)

29. Ito T., A. Bracco and C. Deutsch, (2015), The future of the Southern Ocean carbon storage in CMIP5 models, U.S. CLIVAR Variations, Vol. 13, No. 2, 24-28. (link)

28. Burd A., S. Frey, A. Cabre, T. Ito, N. M. Levine, C. Lønborg, M. Long, M. Mauritz, R. Q. Thomas, B. M. Stephens, T. Vanwalleghem and N. Zeng, (2015) Terrestrial and Marine Perspectives on Modeling Organic Matter Degradation Pathways, Global Change Biology, DOI: 10.1111/gcb.12987 (journal)

27. Ito T., A. Bracco, C. Deutsch, H. Frenzel, M. Long and Y. Takano, (2015), Sustained growth of the Southern Ocean carbon storage in a warming climate, Geophysical Research Letters, 42, doi:10.1002/2015GL064320 (journal)

2014

26. Jones, D.C, T. Ito, Y. Takano and W-C. Hsu, (2014), Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide, Global Biogeochem. Cycles, 28(11), 1163-1178, DOI: 10.1002/2014GB004813 (journal)

25. Deutsch, C., W. Berelson, R. Thunell, T. Weber, C. Tems, J. McManus, J. Crusius, T. Ito, T. Baumgartner, V. Ferreira, and J. Mey, A. van Geen, (2014), Centennial changes in North Pacific anoxia linked to tropical trade winds. Science, 345 (6197): 665, 10.1126/science.1252332. (journal)

24. Takano, Y. T. Ito, C. Deutsch and K. Johnson, (2014),  Interpreting intra-seasonal variability of subsurface tracers observed by a profiling float, J. Geophys. Res. Oceans, 119, 288-296, doi:10.1002/2013JC009290. (journal)

2013

23. Ito, T., and M. J. Follows (2013), Air-sea disequilibrium of carbon dioxide enhances the biological carbon sequestration in the Southern Ocean, Global Biogeochem. Cycles, 27, doi:10.1002/2013GB004682. (journal)

22. Ito, T., and C. Deutsch (2013), Variability of the oxygen minimum zone in the tropical North Pacific during the late twentieth century, Global Biogeochem. Cycles, 27, doi:10.1002/2013GB004567. (journal)

2012

21. Emerson S., T. Ito and R. Hamme, (2012), Argon supersaturation indicates low decadal-scale vertical mixing in the ocean thermocline, Geophysical Research Letters, doi:10.1029/2012GL053054. (journal)

2011

20. Ito T., R. Hamme and S. Emerson, (2011), Spatial and temporal variability of noble gas tracers in the North Pacific, Journal of Geophysical Research – Oceans, 116, C08039, doi:10.1029/2010JC006828. (journal)

19. Jones D.C., T. Ito and N.S. Lovenduski, (2011), The transient response of the Southern Ocean pycnocline to changing atmospheric winds, Geophysical Research Letters, 38, L15604, doi:10.1029/2011GL048145 (journal)

18. Woloszyn M., M. Mazloff, T. Ito (2011), Development and evaluation of a high resolution Southern Ocean carbon cycle model, Ocean Modeling, 39(1-2), pp. 170-182. (journal)

17. Deutsch C., H. Brix, T. Ito, H. Frenzel and L. Thompson, (2011), Climate-Forced Variability of Ocean Hypoxia, Science 333 (6040): 336-339 10.1126/science.1202422 JUL 15 2011. (journal)

2010

16. Ito, T. and C. Deutsch (2010), A conceptual model for the temporal spectrum of oceanic oxygen variability, Geophysical Research Letters, 37, 3, doi:10.1029/2009GL041595. (journal)

15. Ito, T., M. Woloszyn and M. Mazloff (2010), Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow, Nature, 463, 80-83. (journal)

2009

14. Lovenduski N. and T. Ito, (2009), The future of the Southern Ocean CO2 uptake, Journal of Marine Research, 67(5), 597-617. (journal)

13. Van Roekel L., T. Ito, P. T. Haertel and D. A. Randall (2009), Lagrangian Analysis of the Meridional Overturning Circulation in an Idealized Ocean Basin, Journal of Physical Oceanography, 39(9), 2175-2193. (journal)

2008

12. Ito T. and J.C. Marshall, (2008), Control of lower limb circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer, Journal of Physical Oceanography, 38(12), 2832–2845. (journal)

2007

11. Ito, T., C. Deutsch, S. Emerson and R. Hamme (2007), The impact of diapycnal mixing on the observed argon distribution in the subtropical North Pacific., Geophysical Research Letters, 34, L09602, doi:10.1029/2006GL029209. (journal)

2006

10. Ito T. and C. Deutsch (2006), Understanding the saturation state of argon in the thermocline: The role of air-sea gas exchange and diapycnal mixing, Global Biogeochem. Cycles, 20, GB3019, doi:10.1029/2005GB002655. (journal)

9. Parekh P., M. J. Follows, S. Dutkiewicz and T. Ito, (2006), Physical and biological regulation of the soft tissue carbon pump, Paleoceanography, 21, PA3001, doi:10.1029/2005PA001258. (journal)

8. Follows M., T. Ito and S. Dutkiewicz (2006), Solving the carbonate chemistry system in ocean biogeochemistry models, Ocean Modeling. 12 (3-4), 290-301. (journal)

7. Parekh P., S. Dutkiewicz, M.J. Follows and T. Ito, (2006), Atmospheric carbon dioxide in a less dusty world, Geophysical Research Letters, 33, L03610, doi:10.1029/2005GL025098. (journal)

2005

6. Ito T. and M.J. Follows, (2005), Preformed phosphate, Soft tissue pump, and atmospheric CO2, Journal of Marine Research, 63, 813-139. (journal)

5. Ito T., P. Parekh, S. Duekiewicz, and M. Follows, (2005), The Antarctic Circumpolar Productivity Belt, Geophysical Research Letters 32, L13604, doi:10.1029/2005GL023021. (journal)

2004

4. Ito T., M. Follows and E.A. Boyle (2004), Is AOU a good measure of respiration in the oceans?, Geophysical Research Letters, 31, L17305, doi:10.1029/2004GL020900. (journal)

3. Ito T., J.C. Marshall and M.J. Follows, (2004), What controls the uptake of transient tracers in the Southern Ocean?, Global Biogeochem. Cycles, 18(2), GB2021, doi:10.1029/2003GB002103. (journal)

2003

2. Ito T. and M.J. Follows, (2003), Upper ocean control on the solubility pump of CO2, Journal of Marine Research, 61(4), 461-489. (journal)

2002

1. Follows M.J., T. Ito and J. Marotzke, (2002), The wind-driven, subtropical gyres and the solubility pump of CO2, Global Biogeochem. Cycles., 16(4), doi:10.1029/2001GB001786. (journal)