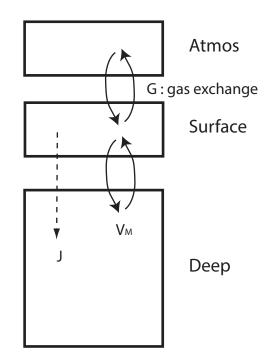
EAS 4305/6305 Physics and Chemistry of the Oceans

Homework #8: Due before class, November 15th

Preindustrial Global Carbon Cycle

1-box atmosphere 2-box ocean model


Consider the 1-box atmosphere 2-box ocean model of the global carbon cycle. The nutrient cycle in this model is discussed in the week 12 slides.

Dissolved inorganic carbon (DIC) is **Cs** in the surface and **Cd** in the deep box.

 K_0 is set to **0.04** (molC/L/atm). Surface alkalinity is set to **2300** μ mol/L (10⁻⁶mol/L). p K_1 is 6 and p K_2 is 9.

We assume that the stoichiometric ratio of organic matter in the ocean is 1:16:106:-138 for P:N:C:O₂.

Assume that the ocean and atmosphere were in steady state with the atmospheric pCO₂ of **280 ppm** in the preindustrial condition. It is equivalent of **280** x **10**⁻⁶ atm.

Analytic solution

- a. What is the surface ocean pCO_2 at steady state?
- b. What is the concentration of surface ocean DIC, Cs, at steady state?
- c. Surface (**Ps**) and deep-water phosphate (**Pd**) are set to **Ps = 1.0** μ molP/L and **Pd = 2.2** μ molP/L. What is the concentration of deep-water DIC, Cd, at steady state?
- d. If the circulation rate V_M is $3 \times 10^8 \text{ m}^3/\text{s}$, what is the magnitude of the global export production of P (J) in the units of PgC/yr?
- e. What is the atmospheric, oceanic and total carbon inventory of this system (in PgC)? Assume that **1 ppm** of atmospheric pCO₂ is equivalent of **2.2 PgC**. The surface area of the ocean is **4 x 10^{14} m**² and the depth of surface box is **100m** and that of deep box is **3000m**.