
Chapter 2

Di↵erential equations

In the second part of the semester, we develop skills
in building models relevant to the Earth, Atmospheric,
Oceanic and Planetary Sciences. In particular, di↵eren-
tial equations will be used to design and describe such
model, and we will also use computers to simulate and
visualize such models.

2.1 Geochemical box model

First we consider ’box model’ where the box represent a
reservoir of chemical elements, such as a layer of soil in
the ground, atmospheric air mass or an ocean basin.

Let’s consider an example using the Earth’s atmo-
sphere as a box. This is a large reservoir, containing
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approximately 1.8 ⇥ 1020 mol of air molecule. About 80
% of the air molecule is nitrogen, and 20% is oxygen.
It also contains minor species such as argon and carbon
dioxide at a lower concentration. About 0.04% of air
molecule is CO2. While its concentration is much lower
than nitrogen or oxygen, it is an important green house
gas and its concentration is changing.

Let’s consider a box model of atmospheric CO2. Fig-
ure 2.1 shows a schematic diagram of the land-atmosphere
carbon cycle. The atmosphere contains X mol of carbon,
and it varies as a function of time, so we may write X(t).
The rate of change of CO2 is controlled by the input and
output of CO2 for the atmospheric box.

dX

dt
= (input)� (output). (2.1)

The input of CO2 includes respiration (metabolism of
living organisms including microbes, plants and animals)
and the burning of fossil fuel by humans. The output of
CO2 is driven by the photosynthesis by the land plants.
Over the course of one year, the photosynthesis and respi-
ration are balancing one another. Let’s approximate the
photosynthesis (output) and respiration (input) together
as a cosine function of time. The equation 2.1 becomes,

dX

dt
= Bcos(2⇡t) + F �O (2.2)
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Figure 2.1: A box model for atmospheric CO2.

where F is the rate of fossil fuel burning (mol/yr), O
is the ocean carbon uptake, and B is the amplitude of
the photosynthesis and respiration. For simplicity, let’s
assume B, F and O are constants.

Let’s solve this equation for X(t). We assume there
is an initial condition for X, so X(t = t0) = X0.

X(t) = X0 +
B

2⇡
sin(2⇡t) + (F �O)(t� t0) (2.3)

We scale units so X can take the value of ppm in
CO2. Then, the magnitude of B and F , O are 25, 4
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and 2 ppm/yr respectively. Here is an example for the
MATLAB script to perform a year-long simulation.

% s e t up model parameters
B=25;
F=4;
O=2;
X0=355;
t0=1991;
% c a l c u l a t e the s o l u t i o n
time=t0 + [ 0 : 0 . 0 1 : 1 ] ;
X=B/(2⇤ pi )⇤ s i n (2⇤ pi ⇤ time )+(F�O)⇤ ( time�t0 ) ;
% p lo t the r e s u l t s
f i g u r e ( 1 ) ;
p l o t ( time ,X) ;
x l ab e l ( ’ time ’ ) ;
y l ab e l ( ’CO2 l e v e l ’ ) ;

Figure 2.2 shows the result of the box model calcula-
tion (eq 2.3). Despite the simplicity of the model, we get
approximately correct behavior of the atmospheric CO2.

There is an alternative way of calculating the evolu-
tion of X. Let’s look at the equation 2.2 again. We can
interpret this equation with a sequence of X with small
increment in time,

Xn+1 �Xn

�t
= Bcos(2⇡tn) + F �O
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Figure 2.2: Atmospheric CO2 level observed at the
Mauna Loa observatory in Hawaii

Xn+1 = Xn +�t(Bcos(2⇡tn) + F �O) (2.4)

which means, given an initial condition in X, the equation
2.4 can be used to predict the value ofX for the next time
step. This is called time stepping. Given a value for Xn,
you can calculate the next time step Xn+1. Then, using
the value for Xn+1, you can get Xn+2. We can repeat the
procedure to march forward in time.

In practice, this approach only works when you take
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a small time step (�t) because we assume that the gra-
dient does not change over the small time step. A larger
time step will cause error in your solution. Here is an ex-
ample for the MATLAB script to perform 100 timesteps
covering 1 year.

% s e t t i n g up the model parameters
N=100;
dt =0.01;
B=25;
F=4;
O=2;
% s e t t i n g up i n i t i a l c ond i t i on
X(1)=355;
time (1)=1991;
% time stepp ing loop
f o r n=1:N�1

time (n+1)=time (n)+dt ;
X(n+1)=X(n)+dt ⇤( B⇤ cos (2⇤ pi ⇤ time (n ) ) + (F�O) ) ;

end
% p lo t the r e s u l t
f i g u r e ( 1 ) ;
p l o t ( time ,X) ;
x l ab e l ( ’ time ’ ) ;
y l ab e l ( ’CO2 l e v e l ’ ) ;

Exercises We will examine the analytic and numer-
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ical solution to the box model equation 2.2.

1. Reproduce Figure 2.2, comparing the observed CO2

and analytic solution.

2. Overlay numerical solution with the time step of
0.01 year.

3. Modify the model where the emission is increasing
with time, F(t) = F0 + F1(t-t0), where F0 = 4
PgC/yr and F1 = 0.4 PgC/yr2. t0 is the initial
time (1991). Calculate the analytic and numerical
solutions.

4. Publish your MATLAB script that performs above
tasks.


