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1.5 Statistical significance of

linear trend

Using the least square method, linear trends (regression
coe�cient) can be calculated for any time varying data.
When we perform the linear regression, we often find
non-zero trend (slope) but how can we tell whether or
not the trend is statistically meaningful? For example,
we found a positive regression coe�cient in Figure 1.12.
One way to measure the importance of the trend, we
calculated the R2 value which measures the fraction of
variance explained by the trend.

We can also perform a hypothesis testing to assess the
significance of the trends. Here we ask the following hy-
pothesis. We state the null hypothesis and its alternative
with the 95% confidence level.

H0: There is no significant trend.
H1: There is a significant trend (the regression coef-

ficient is significantly di↵erent from zero).
To rephrase H0, the observed regression coe�cient

a1 is not di↵erent from zero given the uncertainty in es-
timating the trend, and we use the 95% confidence level
as the threshold. Note that this hypothesis is formulated
for a two tail test because we are not specifying whether
the trend would be positive or negative. Alternatively,
we can formulate the one tail test as follows.

H0: There is no significant positive trend.
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H1: There is a significant positive trend.
This set of hypothesis is not considering the possibil-

ity that the trend can be negative. Our calculation from
the previous section indeed shows the positive trend, so
it is acceptable to perform the one tail test. One tail test
gives more power to reject the null hypothesis because it
slightly lowers the boundary of the confidence interval.

The residuals of regression, e, are defined as e = (a0+
a1x)� y, and its variance, s2e, is

s2e =
1

Neff � 2

NX

i

e2i (1.33)

This measures the scatter of data about the regression
line. Neff is the e↵ective sample size. If the values of ei
are independent, we have Neff = N , the standard error
of the regression coe�cient, and sa, is shown to follow
(Santer et al., 2000)

s2a =
s2ePN

i (x� x)2
. (1.34)

The statistic, t = a1/sa, is distributed as Student’s t
with the degree of freedom of Neff � 2.

In this example, there are many years of observation.
For the whole period (1879 to 2015) the linear trend a1
is 0.0125�F/yr and sa is 0.004�F/yr. Then the t-statistic
is

t =
a1
sa

= 3.05. (1.35)
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The critical t value for the two-tail test with d.f. =
Neff � 2 and 95% confidence level is 2.0. The t-value
of 3.05 is outside the envelope of uncertainty about the
zero trend.

Thus, we reject the null hypothesis, and we conclude
that there is a significant century-scale trend (1879 to
2015). Using the standard error of the linear trend, we
may also state that the linear trend and its uncertainty
(95% CI) is 1.25±0.8⇥10�2�F/yr where the uncertainty
is two times the standard error. Here, we performed the
two tail test. We can repeat the analysis with one tail
test and we know that the null hypothesis will be rejected
because it didn’t pass the two-tail test.

E↵ective sample size

In the previous example, there was a caveat that each
measurement may not be independent from one another.
Then the degree of freedom is modified based on the e↵ec-
tive sample size, Neff . In our example, we were looking
at the temporal evolution of temperature. It is possible
that measurement from one year is NOT independent
from prior year or the year after. If the temperature in
one year is similar to the previous year’s temperature,
we may have an issue with the independence of the data.
There is a method to calculate the ’e↵ective’ sample size
including the e↵ect of persistence in the data (Breather-
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ton, 1999).

Neff = N
✓
1� r

1 + r

◆
(1.36)

where r is the lag-1 autocorrelation coe�cient. Autocor-
relation is a correlation with itself but with some time
lag. Without the time lag, the correlation must be per-
fect (=1). Lag-1 autocorrelation means that you take the
correlation coe�cient with the same variable itself but it
is shifted in time by 1 unit. If the signal is persistent in
the data, you may see non-zero autocorrelation (r > 0),
and in such case, we scale down the e↵ective sample size.
It is always a good idea to use this method for determin-
ing the e↵ective sample size of the observational data.

Statistical significance of correlation

We can also test whether or not the two variables are
correlated in a significant way. Let’s think about this
example. We have two variables, surface air temperature
and an index for El-Nino condition, and we want to in-
vestigate the relationship between air temperature and
the state of El-Nino condition.

We go ahead and calculate the correlation coe�cient
between the surface air temperature and the El-Nino in-
dex for each grid cells according to Eq 1.27. Following
our thinking about the hypothesis testing, we state the
null hypothesis and its alternative.

H0: There is no significant correlation.
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H1: There is a significant correlation (the correlation
coe�cient is significantly di↵erent from zero).

In this case, the t-statistic is

t = r

s
N � 2

1� r2
. (1.37)

And the e↵ective sample size depends on the lag-1
autocorrelation of the two variables, surface air temper-
ature (r1) and the index of El-Nino condition (r2).

Neff = N
✓
1� r1r2
1 + r1r2

◆
(1.38)

Exercises We will test the significance of the linear
trend in the monthly surface air temperature data from
NCEP reanalysis (air.mon.mean.nc).

1. Calculate the linear trend of January temperature
for each grid cell. (Store the results in an array.)

2. Calculate the standard error of the linear trend for
each grid cell.

3. Calculate the e↵ective sample size for each grid cell.

4. Perform a t-test to determine whether or not there
is a statistically significant linear trend for each grid
cell.



CHAPTER 1. DATA ANALYSIS 52

5. Make a color map (using m pcolor) of January tem-
perature trend. Place a marker for the grid cells
with statistically significant trend.

6. Publish the MATLAB script that performs all of
the activity above, and submit it as a report in the
PDF format.

Reference
Santer, B.D. et al., (2000) Statistical significant of

trends and trend di↵erences in layer-average atmospheric
temperature time series, Journal of Geophysical Research,
(105), D6, pp. 7337-7356.
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1.6 Correlation maps

Correlation analysis can be a very powerful tool to estab-
lish a statistical relationship between the two variables.
Section 1.4 showed that a correlation coe�cient between
a pair of two variables x and y is defined as the covari-
ance divided by the standard deviation of x and y (Eq.
1.27). Then section 1.5 further developed the method
to evaluate the statistical significance of the correlation
coe�cient.

Consider the example of surface air temperature and
the index for El-Nino. The surface air temperature has
the spatial and temporal variation, T = T (t, x, y), where
x is longitude, y is latitude and t is time. Then it is possi-
ble to construct a x� y map of correlation coe�cient by
performing the calculation of the correlation coe�cient
many times, for each position in (x, y) space. Repeti-
tive calculations can be done by the loop statement in
MATLAB. For example, you can define a new function
”correlate” that calculates the correlation coe�cient and
its statistical significance, where m(t) is the index of El-
Nino and T (t, x, y) is the surface air temperature.

>> f o r i =1:Nx
>> f o r j =1:Ny
>> [ r , s ] = c o r r e l a t e (m,T( : , i , j ) ) ;
>> rxy ( i , j )=r ;
>> sxy ( i , j )=s ;
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>> end
>> end

Here, we have to be careful that both the indices of
El-Nino and temperature must be anomalies from the
climatology. It usually means that the mean seasonal cy-
cle is subtracted from the original data. El-Nino events
have strong interannual variability (2–7 year timescale)
and this step allows us to focus on the year-to-year vari-
ability. The raw data often includes strong signature of
seasonality, and it should be removed before calculating
the correlation. Fig 1.13 shows the resulting pattern of
rxy.

ExercisesWe will generate correlation maps between
surface air temperature and the index of North Pacific
Gyre Oscillation http://www.o3d.org/npgo/.

1. Develop a MATLAB function that calculates the
correlation coe�cient between two variables.

2. Download the NPGO index from Prof. Di Lorenzo’s
website (http://www.o3d.org/npgo/npgo.php) and
load it on MATLAB.

3. Remove the mean seasonal cycle from the data and
calculate the e↵ective sample size of the air temper-
ature data for each grid cell for the 66 year period
(1950-2015).
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Figure 1.13: Correlation map. Surface air temperature
anomalies are correlated with the Nino 3.4 index. The
data period is from 1950 to 2015.

4. Calculate the e↵ective sample size of the NPGO
index for the 66 year period (1950-2015).

5. Calculate correlation coe�cient for each grid cell.

6. Generate a map similar to Fig 1.13 for the NPGO.

7. Publish the MATLAB script that performs all of
the activity above, and submit it as a report in the
PDF format.

Reference
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Di Lorenzo et al., 2008, North Pacific Gyre Oscillation
links ocean climate and ecosystem change, Geophysical
Research Letters.


