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2.6 Di↵usion equation

The last major component of this class is so-called di↵u-
sion (or heat) equation. It is motivated by the transfer
of heat across medium. The heat tends to spread from
the hot region to the cool region. The physics behind it
is the heat conduction by the Brownian motion, leading
to the down-gradient di↵usion.

The flow of heat in x-direction can be expressed as

Fx = �k
@T

@x
(2.46)

where T is the temperature and k is the di↵usivity coe�-
cient in units of m2s�1. The negative sign indicates that
it is a down-gradient flux as the heat flows from high to
low temperature regions.

When there is a convergence of heat, we anticipate a
warming in the medium. Thus the rate of heating can be
written as

@T

@t
= �@Fx

@x

= k
@2T

@x2
. (2.47)

The Eq 2.47 is called the ”heat equation” or di↵u-
sion equation. It predicts that the rate of local heating
is proportional to the curvature (second derivative) of
the temperature profile. If there is a local peak in the
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temperature profile, it will cool down because the heat
escapes from it. The rate of heating/cooling is dictated
by the di↵usivity coe�cient (k).

Analytic solution

In some cases it is possible to derive analytic solution.
Consider a metal bar of length L. Both ends of the bar
is set to a constant temperature (T = 0). The bar is
heated to a constant temperature (T = T0 > 0) at t = 0.
What would be the evolution of temperature T (x, t) in
the bar?

We solve this by the separation of variable. Assume
a solution exists in the form of T (x, t) = X(x)T (t). Sub-
stitute this into the Eq 2.47. After a few manipulations,
we find a set of ODEs

dT

dt
= ��kT (2.48)

d2X

dx2
= ��X (2.49)

The first equation (2.48) predicts an exponentially
decaying solution in time, and the second (2.49) predicts
a set of sinusoidal (sin and cos) solution in space.

T (t) = e��kt (2.50)

But the value of � is yet to be determined.
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The second equation (2.49) has a solution of the form

X(x) = Asin(
p
�x) (2.51)

where A is a constant. Because of the boundary condition
(X = 0 at x = 0, L), the value of � is set such that

p
�L = n⇡ n = 1, 2, 3... (2.52)

The solution can be expressed as the superposition of
many sine functions. The exact combination is deter-
mined by the initial condition. At t = 0, we have T = 1
and the sum of the Eq 2.50 must equal T0.

T0 = ⌃
⇢
Tnsin

✓
n⇡x

L

◆�
. (2.53)

This is a Fourier sine series, and the value of Tn can be
calculated as

Tn =
4T0

n⇡
n = 1, 3, 5... (2.54)

Fig 2.9 shows how the sine waves can represent the uni-
form constant through superposition.

So the full solution is

T (x, t) = ⌃Tne
�(n⇡

L )
2
ktsin

✓
n⇡x

L

◆
(2.55)

Examining the form of the solution, we see that higher
wave number (n) decays faster, leaving behind the low
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Figure 2.9: Partial sum of the Fourier sine series for the
constant initial condition.

wave number modes. The analytic solution can be plot-
ted as a function of time. For the case of L = 10m and
k = 10�2m2s�1, Fig 2.10 shows the solution at t = 1,
10, 100, and 1,000 seconds. It starts o↵ cooling at the
edges and the temperature gradually decreases towards
the middle of the domain.
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Figure 2.10: Analytic solution to the heat equation at
time t=1, 10, 100 and 1,000 seconds.

2.7 Numerical solution to the

heat equation

Now that we solve the heat equation numerically. Similar
to the wave equation, we take the grid point approach
where the domain is divided into small chunks of �x.

Because the boundary condition for temperature is
fixed at x = 0, L, it is good to set the temperature grid on
the boundaries. Then the heat flux is defined in between



CHAPTER 2. DIFFERENTIAL EQUATIONS 101

the temperature grids.

Fn = �k
T (n)� T (n� 1)

�x
(2.56)

At the nth temperature grid point, the incoming heat
flux is Fn and the outgoing heat flux is Fn+1. The net
temperature increase is

@T

@t
=

Fn � Fn+1

�x

= k
T (n+ 1)� 2T (n) + T (n� 1)

�x2
(2.57)

Taking the Euler forward method in the time step-
ping, we get

T (n, t+�t) = T (n, t)� �tk

�x2
(2.58)

{T (n+ 1, t)� 2T (n, t) + T (n� 1, t)}

A numerical scheme is implemented with the grid
spacing of �x = 0.2m and the time step of �t = 1 sec.
The the Courant number for this problem is k�t

�x2 . For this
parameter choice, the value of C is 0.25 so it satisfies the
Courant condition.
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Figure 2.11: Comparing the numerical and analytic so-
lutions to the heat equation.


