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2.3 Partial di↵erential equation

In the previous section, our model started to resolve both
spatial and temporal variations as a system of coupled
ODEs. The global ocean was divided into 3 boxes, re-
sulting in a coupled three ordinary di↵erential equations
(ODEs). If we want to better resolve the spatial pattern
of phosphorus, we can continue to add more and more
boxes representing the global ocean. It will lead to many
boxes and di↵erential equations to represent them.

Partial di↵erential equations (PDEs) provide a math-
ematical framework to treat variations in more than one
dimensions (such as time and space), and is often used in
the Earth, atmospheric, oceanic and planetary sciences.

Consider waves. Waves propagates information (ve-
locity, pressure, etc) across time and space. In order to
model wave propagation, we have to model the physical
system not only how it evolves over time (like we did
for the box models) but also how it propagates in space.
This requires the use of PDEs.

We start o↵ our discussion of PDEs using wave equa-
tions as an example. We first analyze the property of
waves and the class of PDEs called wave equation. We
then develop a numerical approach to solve for the wave
equation using MATLAB.
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Plane wave

An infinite plane wave, in a simplest form, can be de-
scribed using a sine and cosine function.

f(x, t) = Asin(kx� !t) (2.31)

where k is the wave number and ! is the angular fre-
quency. As the name indicate, k measures how many
waves you can fit within the length of 2⇡. The wave
length (�) can be calculated as the distance in x where
the wave makes a full cycle, k� = 2⇡. In a similar way,
angular frequency (!) measures how many cycles of wave
can occur within the time of 2⇡. The wave period (T )
can be calculated as the time in takes for the wave to
make a full cycle, !T = 2⇡.

The ratio between ! and k determines the wave speed,
c = !

k
as the phase angle of the wave remains constant if

x = ct.

Superposition of two plane waves

Now consider the superposition of two plane waves with
slightly di↵erent wave number and angular frequency.

fA = Asin {(k � �k)x� (! � �!)t} (2.32)

fB = Asin {(k + �k)x� (! + �!)t} (2.33)

where �k and �! are small changes and their magnitudes
are much smaller than k and ! respectively. With a few
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manipulations, we can show that the combined wave has
the form

fA + fB = 2Asin(kx� !t)
| {z }

fast,short

cos(�kx� �!t)
| {z }

slow,long

(2.34)

Thus the interference pattern that results from the su-
perposition of the two similar waves has the slowly chang-
ing, long wave component. This occurs when you hear
beats tuning the guitar strings. When the strings are
not perfectly tuned, they give slow beats and you would
adjust the tension of the string until the beats disappear.

Phase and group velocity

Here there are two types of wave propagation. As before,
the ratio between ! and k determines the wave speed,
c = !

k
. This is called phase velocity, it captures the

propagation speed of the phase angle of the wave. There
is another velocity associated with the pattern of wave
interference. The ratio between �! and �k determines the
speed at which the interference propagates, cg =

�!
�k
. This

is called group velocity. The group velocity determines
the propagation of energy in the geophysical waves and
plays important roles in meteorology and oceanography.
In general the group velocity can be defined as

cg =
@!

@k
. (2.35)
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In general, the dependence of frequency (!) on wave
number (k) is termed as dispersion relation. For some
waves, such as sound wave, c = cg = constant for all fre-
quencies. Regardless of the pitch of our voice, the sounds
we make travels through the air at the same speed. This
allows us to communicate by speech. For other waves,
however, c can vary depending on the frequency. When
you throw a stone in a quiet pond, it makes a concentric
circle that spreads out. In this case the water wave is dis-
persive. The longer wave tends to travel faster than the
short waves, leaving behind the short waves. Since the
dispersion relation can be used to characterize the wave
propagation, it often becomes the primary objective of
the studies of geophysical waves.

Exercise

1. Consider a tsunami wave with a speed of
p
gH

where H is the depth of the ocean. With the av-
erage ocean depth of 4km in the Pacific, how long
does it take for it to travel across the Pacific (as-
suming 10,000km wide)?

2. What is the wave length of the above tsunami wave
at the frequency of ! = 1(min�1)?

3. Show that the wave function, h(x, t) = Asin(kx �
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Figure 2.5: A schematic diagram for the shallow water
model.

!t), satisfies the partial di↵erential equation, @2h
@t2

=

c2 @
2h

@x2 where c is the wave speed.

2.4 Shallow water equation

Here we examine the one-dimensional shallow water equa-
tion. Fig 2.5 schematically describes the model. It con-
sists of a fluid of mean depth of H with one-dimensional
velocity u(x, t) (black arrow). The surface of the fluid can
be slightly elevated or depressed with anomalous surface
height of h(x, t) (red arrow).

Surface height controls the distribution of water pres-
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sure. Elevated surface level means there is more pressure
underneath. Horizontal variation in the surface height
generates pressure variation that accelerates the water.
The Newton’s law in x-direction can be written as

M
@u

@t
= �Mg

@h

@x
(2.36)

where M is the mass of the water per unit area (density
⇥ mean depth) and is assumed to be a constant. The
negative sign on the RHS indicates that the pressure force
acts from the high to low pressure region.

When there is a horizontal velocity variations, there
can be accumulation of mass locally. The statement of
mass conservation can be expressed as

@h

@t
= �H

@u

@x
. (2.37)

Combining the equation of motion (Newton’s law)
and the conservation of mass gives us the wave equa-
tion. If the velocity u is eliminated between the two Eqs
(2.36,2.37), we get

@2h

@t2
= c2

@2h

@x2
(2.38)

where c is the wave speed defined as
p
gH. This form of

partial di↵erential equation is commonly called the ”wave
equation”.
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Apply the form of h(x, t) in the plane wave (Eq 2.31)
and find the dispersion relation as

! = ±ck. (2.39)

This means that there are two classes of solutions to this
wave equation. One is propagating in the positive x di-
rection at the speed of c, and another solution propagates
in the negative x direction at the same speed.

There could be many solutions to the above wave
equation. The dispersion relation only determines the
wave propagation. There are infinite possibilities for its
particular phase and amplitudes, so actual solutions de-
pend on the initial and boundary conditions.

2.5 Numerical solutions to the

shallow water equation

Consider the shallow water wave in a well with the hor-
izontal extent of �L  x  +L. At the edges there is
no flow into and out of the well (u = 0; x = ±L). This
section develops a numerical algorithm to solve the wave
equation in this domain.

Here, we take a simple, regular grid approach where
we divide the domain into small chunks of equal size in
�x, and we calculate the fluid velocity (u) and water
height (h) for each of the grid points. Fig 2.6 shows the
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Figure 2.6: A schematic diagram for the staggered grid.

definition of the grid points. We also ”stagger” the veloc-
ity and pressure (h) grid points where they are defined
with a o↵set of half �x. The reason for setting up stag-
gered grid becomes evident below. It also makes sense to
place the velocity points overlapping the domain bound-
ary at x = ±L, so it is easy to implement the boundary
condition.

We choose to use the Eqs 2.36 and 2.37. Let’s first
consider the Newton’s law (Eq. 2.36). This equation
involves the evaluation of the pressure gradient to de-
termine the acceleration of the velocity. To calculate the
acceleration at the velocity point (n), we need to evaluate
the surface height gradient at that point.

"
@h

@x

#

n

⇠ h(n, t)� h(n� 1, t)

�x
. (2.40)
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Using this representation of the height gradient, we
can consider performing the Euler forward time stepping
for the velocity u.

u(n, t+�t) = u(n, t)��tg

"
@h

@x

#

n

. (2.41)

Similarly, we can approximate the gradient of veloc-
ity at the pressure (height) points to integrate the mass
conservation equation.

"
@u

@x

#

n

⇠ u(n+ 1, t)� u(n, t)

�x
. (2.42)

h(n, t+�t) = h(n, t)��tH

"
@u

@x

#

n

. (2.43)

Given an initial condition in u and h, we can step
forward the model to simulate the wave equation. As
an example, a simulation with the mean depth of H =
1m and L = 5m is shown in Fig 2.7. The grid is set
up with a 0.2m grid spacing and the time step is set to
0.01s. The initial condition is u = 0 everywhere and h =
0.2e�(x+L). This creates a wave that initially propagate
in the positive x direction, and then it bounced against
the wall.

Despite its simplicity, the model can simulate the
wave propagation reasonably well. Approximately it took
3 seconds for the wave to travel across the well width of
10m. This implies the wave speed of about 3ms�1. Based
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Figure 2.7: Wave simulation with the Euler forward
scheme. These are snapshots at 1 second intervals.

on the depth of 1m, we get the wave speed c =
p
gH =

3.1ms�1. In this application, however, the Euler forward
scheme develops a significant numerical ’noise’ following
the wave crest.

Predictor-corrector method

The issue of numerical noise can be addressed by the
application of more stable time stepping scheme. Here,
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we use a simple predictor-corrector method. It aims to
achieve the stability of the Euler backward scheme. In
this context, the velocity is first stepped forward using
the Eular forward scheme. Then, using the velocity gra-
dient at t+�t, the surface height is then stepped forward
in time. Once the surface height is determined at t+�t,
then re-calculate the velocity using the updated surface
height fields.

up(n, t+�t) = u(n, t)��tg

"
@h

@x

#

n

.

h(n, t+�t) = h(n, t)��tH

"
@up(t+�t)

@x

#

n

.

u(n, t+�t) = u(n, t)��tg

"
@h(t+�t)

@x

#

n

.(2.44)

up is only used to calculate the gradient of u at t + �t
and its value is not retained. The last equation is the
’correction’ step which is calculated based on the surface
height gradient at t+�t.

Stability of numerical schemes

Comparing Figs 2.7 and 2.8, the predictor corrector method
produces more realistic, smooth wave profiles. More sta-
ble schemes are more tolerant to the numerical noises
given a set of time steps and grid spacing. If we take a
time step that is too long, any numerical scheme is not
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Figure 2.8: Wave simulation with the predictor-corrector
scheme. These are snapshots at 1 second intervals.

immune to the instability. There is a principle that reg-
ulates the stability of the computational schemes under
di↵erent sizes of time steps and grid spacing.

The Courant–Friedrichs–Lewy (CFL) condition is a
necessary (but not su�cient) condition for convergence
of numerical solutions to partial di↵erential equations.
The Courant number is a dimensionless number defined
as

C =
c�t

�x
. (2.45)
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where c is the fastest wave speed represented in the model
(in our case,

p
gH). The CFL condition states that the

Courant number (C) must be smaller than 1. If the value
of C is greater than 1, a wave can travel across more
than one grid point within a time step. This will cause
numerical instability.

In the example above, we used the mean water depth
of 1m, we have about c = 3ms�1. The grid spacing is
0.2m. Thus we must use the time steps that are shorter
than 0.066s. We used the �t of 0.01s, so in this case we
have C = 0.15 and it satisfied the CFL condition.

Exercises

1. Reproduce the calculation shown in Fig 2.8. Make
sure that the propagation of the wave is consistent
with the theoretical value.

2. Simulate the wave propagation for a longer time
period. Let’s say for 30 seconds. Observe and
comment on the amplitude of the wave and how
it changes with time.

3. Examine the simulation with an increased time step.
Perform several simulations. Observe and comment
on the behavior of your solution.

Advanced exercises
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1. Generate a two dimensional shallow water model
by including the Newton’s law in y-direction.


