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2.2 3-box model of marine

phosphorus cycle

In this section, we build a box model including the in-
teractions between multiple boxes. This is a concep-
tual model developed by Robbie Toggweiler and Jorge
Sarmiento (Sarmiento and Toggweiler, 1984; Toggweiler
and Sarmiento 1985). Here, we focus on the phosphorus
cycle in the ocean. Figure 2.3 is the schematic diagram of
the model. The model consists of low latitude (L), high
latitude (H) and deep ocean (D), and their volume are
VL, VH and VD (m3) respectively. The black arrow indi-
cates the ocean’s thermohaline circulation (C) including
the upwelling of deep water at low latitudes, poleward
surface flow and sinking at high latitudes. There is also
deep convection at high latitude that exchanges waters
vertically (M).

Phosphorus is a necessary nutrient for marine food
web. In addition to the ocean circulation, the photo-
synthesis and formation of sinking organic material can
transport phosphorus vertically. As indicated by the
green dash line, phosphorus is consumed at the surface,
sinks down as organic particles, and returns to water as
it decomposes at depths.

The rate of change of phosphorus can be expressed as
the contrast between inputs and outputs for each boxes.
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Figure 2.3: A box model for ocean phosphorus cycling.

VL
dPL

dt
= C(PD � PL)� BL (2.5)

VH
dPH

dt
= C(PL � PH) +M(PD � PH)� BH(2.6)

VD
dPD

dt
= (C +M)(PH � PD) + BL +BH (2.7)

where PL, PH and PD are phosphorus concentrations
(molPm�3). The circulations (C, M) are in the units
of volume flux (m3s�1).
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Numerical solutions to a system of
ordinary di↵erential equations

This is a system of coupled three ordinary di↵erential
equation. The biological uptake of phosphorus at low and
high latitudes, BL and BH are in the units of molPs�1.
Biological uptake is a complex function of light, temper-
ature, nutrients and ecosystem processes. In the simplest
possible sense, it can be modeled as a simple function of
local phosphorus concentration, Bi = �ViPi (where i can
be L or H). � measures the nutrient specific phosphorus
uptake rate, and is a measure of biological e�ciency.

We can express this system of equations in the vector-
matrix form.

P =

0

B@
PL

PH

PD

1

CA (2.8)

T =

0

B@
�(cL + �) 0 cL

cH �(cH +mH + �) mH
�VL

VD
cD +mD + �VH

VD
�(cD +mD)

1

CA(2.9)

d
dt
P = TP (2.10)

where ci =
C
Vi

and mi =
M
Vi

(i=L, H or D). Similar to the
case of the one box model, the system of equation can be
integrated forward as follows.

Pn+1 = Pn + dtTPn

= (I+ dtT)Pn (2.11)
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This is called Euler forward scheme. Given an
initial condition in P0, the equation 2.11 can be used
to predict the next time step, P1. This is called time
stepping. Given a value for Pn, you can calculate the
next time step Pn+1. Then, using the value for Pn+1,
you can get Pn+2. We can repeat the procedure to march
forward in time. The limitation of this approach is that
it becomes unstable if the time step (dt) is large.

Alternatively, the time stepping scheme can be for-
mulated slightly di↵erently as follows.

Pn+1 = Pn + dtTPn+1

(I� dtT)Pn+1 = Pn

Pn+1 = (I� dtT)�1Pn (2.12)

This is called Euler backward scheme. While this
requires additional calculations for taking the inverse of
(I�dtT), it is known that the Euler backward scheme is
stable even with a long time step.

Figure 2.4 shows the numerical solution using the Eu-
ler forward scheme. This particular simulation is initial-
ized with the uniform P concentration of 2·10�3molPm�3.
After 10 years of integration (3,600 days with 1 day time
step), the model has reached a steady state solution.
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Euler forward and backward scheme

• Two first order finite di↵erence schemes for integrat-
ing d

dt
P = TP

• Euler forward: Pn+1 = (I+�tT)Pn

• Euler backward: Pn+1 = (I��tT)�1Pn

• They are similar in terms of accuracy. However,
Euler forward scheme is unstable if a large time step
is taken. Euler backward scheme is always stable.

Surface ocean is relatively low in the nutrient level,
and the deep ocean is enriched as observed. This is due
to the biological uptake of nutrient in the surface layers
and the return of nutrients in the deep layer. Table 2.1
shows the set of parameters used for this calculation.

Eigenvalue and stability

This model is stable. How do we know that it is a stable
system? One empirical way to check the model’s stability
is to numerically integrate the system and see whether or
not the solution converges. It means that when the ocean
phosphorus cycle goes out of balance, it has a stabilizing
mechanism to bring it back to the steady state.

However, this empirical approach leaves some uncer-
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Figure 2.4: A box model for ocean phosphorus cycling.

Symbol Name Value Units
VL Low lat volume 3 · 1016 m3

VH High lat volume 1.6 · 1016 m3

VD Deep volume 1.4 · 1018 m3

C Circulation 6 · 107 m3s�1

M Convection 8 · 107 m3s�1

� P uptake rate 3.2 · 10�8 m3s�1

Table 2.1: Model parameter used in the 3 box model of
ocean phosphorus cycling
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tainty because it depends on how the numerical solutions
are derived. For example, the size of the time steps can
influence the stability of the numerical model, but that
does not come from the formulation of the original phos-
phorus cycle model. That means, the stability of the sys-
tem of equations themselves can be di↵erent from that
of the recursive relations derived from the numerical im-
plementation of the model.

Consider a simple example, dx
dt

= kx. It’s analytic
solution is x(t) = x0ekx. In this example, the value of k
determines the stability of x(t). If k > 0, the solution for
x(t) grows exponentially, and it never reaches a steady
state. If k < 0, it decays exponentially towards zero
which is the steady state solution. If k = 0, the system
is neutrally stable; x =(constant).

What controls the stability of the original model equa-
tion, d

dt
P = TP ? Eigenvalues of T provides similar

information to k in the previous paragraph,

Tq = �q. (2.13)

where � and q are the eigenvalue and corresponding eigen-
vector of T. Since it is a 3 ⇥ 3 matrix, we get 3 sets of
eigenvalues and eigenvectors. In MATLAB, you can cal-
culate the eigenvalue of the matrix as follows.

>> [Q,L]= e i g (T) ;
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Imagine a solution with a form of P ⇠ e�tq, and
substitute it into d

dt
P = TP. Using the definition of

eigenvalue-eigenvector (2.13), we see that it satisfies the
di↵erential equation. So we can write the solution for P;

P(t) = c1e
�1tq

1

+ c2e
�2tq

2

+ c3e
�3tq

3

. (2.14)

If one of the eigenvalue takes a positive value, the system
is unstable. Small change will exponentially grow into a
larger and larger values. The condition for stability for a
system of ODE is that all of eigenvalues are negative or
equal to zero.

Analytic solution: matrix exponential

The eigenvalue-eigenvector analysis provides additional
benefit. It leads to the analytic solution. The constant
coe�cients, ci(i = 1, 2, 3) needs to be determined from
the initial condition. At t = 0,

P(0) = c1q1

+ c2q2

+ c3q3

= Qc (2.15)

Then we get c = Q�1P(0). The whole solution can then
be written as follows;

P(t) = Qe⇤tc (2.16)

= Qe⇤tQ�1P(0) (2.17)

= eTtP(0) (2.18)
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Here the diagonal matrix⇤ contains eigenvalues (�) in its
main diagonal, and e⇤t is a diagonal matrix with the ele-
ments set to the exponential of eigenvalues times t. Each
column vector of Q contains the corresponding eigenvec-
tors (q). The last two steps defines the solution in the
form of matrix exponential.

P(t) = eTtP(0) (2.19)

where the matrix exponential eTt is defined as

eTt = Qe⇤tQ�1 (2.20)

In MATLAB, you can calculate the matrix exponen-
tial as follows.

>> P( : , n)= expm(T⇤ time (n ) )⇤P0 ;

Steady state solution

In this particular problem, the examination of the three
eigenvalues shows that there are two negative and one
zero eigenvalue. Remember that the solution can be writ-
ten following Eq (2.21). Let us call the two decaying
eigenvectors q2 and q3, and they will vanish with time.
So, the steady state solution will be dictated by the first
eigenvector whose corresponding eigenvalue is zero.

P = c1q1

(2.21)
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For this type of problem, it is also common to simply
seek for steady state solution ( d

dt
! 0) without consid-

ering the time stepping. Setting the (RHS) of Eqs 2.5 -
2.7 to zero leads to three algebraic equations with three
unknows (PL, PH , PD). However, this system of alge-
braic equation is not solvable because the matrix T is
not full rank. Pick two of the three equations, and the
third equation can be expressed as a linear combination
of the first two.

The sum of Eqs 2.5 - 2.7 results in the cancellation of
all transport and biological terms.

d

dt
⌃i {ViPi} = 0 (2.22)

This implies that the constant of integration is the to-
tal phosphorus inventory. This is the statement of the
conservation of phosphorus in the ocean. Ocean circula-
tion and biological processes do not generate nor destroy
phosphorus in the system. It is only re-distributing the
phosphorus without changing its inventory.

⌃i {ViPi} = constant (2.23)

This conservation statement provides the third equa-
tion that allows us to determine the steady solution. For
example, we can replace the deep ocean equation with
the integral constant.

0 = cL(PD � PL)� �PL (2.24)



CHAPTER 2. DIFFERENTIAL EQUATIONS 79

0 = cH(PL � PH) +mH(PD � PH)� �PH(2.25)

P = vLPL + vHPH + vDPD (2.26)

where vi is the fractional volume (Vi

V
where V is the total

volume), and the P is the prescribed global mean phos-
phorus concentration, which must be supplied to deter-
mine the steady solution. In this case you will get a full
rank matrix, which can be inverted to find the steady
solution.

In the vector-matrix form,

s =

0

B@
0
0
P

1

CA (2.27)

U =

0

B@
�(cL + �) 0 cL

cH �(cH +mH + �) mH

vL vH vD

1

CA (2.28)

s = UP (2.29)

P = U�1s. (2.30)

This way, we can also calculate the steady state solution
without taking a time step.
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Exercises:

1. Carbon-14 (14C) is subject to radioactive decay.
The concentration of 14C is known to decay fol-
lowing the equation, d[14C]

dt
= ��[14C]. What is the

analytic solution for [14C](t) with an initial condi-
tion of [14C](t) = C0 at t = 0?

2. The time period over which the half of [14C] decays
is known as the half-life, and it is approximately
5,730 years. What is the value for k? (include
units in your answer)

3. We want to solve the above problem numerically us-
ing the Euler forward time stepping method. What
is the mathematical relationship between [14C] of
two consecutive time steps?

4. Now we want to solve the above problem numeri-
cally using the Euler backward time stepping method.
What is the mathematical relationship between [14C]
of two consecutive time steps?
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5. Develop a MATLAB script to simulate the decay
of [14C] over 20,000 years. Make sure that your nu-
merical integration accurately reproduces the ana-
lytical solution.

6. (extra credit +10%) Predator-Pray equation. Con-
sider rabbit (X) and fox (Y) populations. Their
evolution can be written as;

dX

dt
= aX � bXY

dY

dt
= bXY � cY

where a, b and c are arbitrary constants (they can
be all set to 1, for example). What is the steady
states of this system?

7. (extra credit +40%) Develop a MATLAB script to
simulate the time evolution and X and Y using the
Euler backward time stepping method. This is a
non-linear problem. You cannot use the matrix ap-
proach.


